مقایسه مدل های شبکه عصبی مصنوعی و رگرسیون چند متغیره در تخمین تغییرات کیفی آب زیرزمینی (مطالعه موردی: آبخوان کاشان)

Authors

محمد میرزاوند

هدی قاسمیه

سید جواد ساداتی نژاد

محمود اکبری

abstract

مجاورت آبخوان کاشان با جبهه­ آب شور دریاچه­ نمک، باعث ایجاد شیب هیدرولیکی و درنتیجه پیشروی آب شور به داخل آبخوان شده است. در این پژوهش با توجه به وضعیت موجود، شبیه­سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل­های شبکه عصبی مصنوعی (شامل پرسپترون چندلایه و تابع شعاعی) و رگرسیون چند متغیره انجام شد. برای این منظور ابتدا اقدام به تعیین تیپ غالب آب منطقه شد و سپس اقدام به مدل­سازی شد. نتایج حاصل از بررسی تیپ آب نشان داد که کلرور- سدیم، تیپ غالب آب منطقه است. بنابراین در مدل­سازی­ها، علاوه بر تغییرات سطح ایستابی و بارندگی، مقدار غلظت کلرور در سال قبل نیز به­عنوان ورودی مدل انتخاب گردیده و خروجی مدل نیز، مقدار کلرور در سال جاری بوده است. نتایج نشان داد که مدل پرسپترون چندلایه نسبت به مدل­های تابع شعاعی و رگرسیون چند متغیره دارای نتیجه­ بهتری در پیش­بینی غلظت کلر در 11 سال آینده بوده است. به طوری که ضریب تبیین اصلاح شده­ حاصله، به­ترتیب برابر 97/0، 89/0 و 34/0 بودند. همچنین تابع محرک تانژانت هایپربولیک خطی و الگوریتم مومنتوم، نتایج بهتری را نسبت به توابع و الگوریتم­های دیگر نشان دادند. نتایج حاصل از تحلیل حساسیت مدل نشان داد که غلظت کلر در سال قبل و تغییرات سطح ایستابی، مهم­ترین تأثیر را در شبیه­سازی غلظت کلر داشته است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه‌ مدل‌های شبکه‌ عصبی مصنوعی و رگرسیون چند متغیره در تخمین تغییرات کیفی آب زیرزمینی (مطالعه‌ موردی: آبخوان کاشان)

مجاورت آبخوان کاشان با جبهه­ آب شور دریاچه­ نمک، باعث ایجاد شیب هیدرولیکی و درنتیجه پیشروی آب شور به داخل آبخوان شده است. در این پژوهش با توجه به وضعیت موجود، شبیه­سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل­های شبکه عصبی مصنوعی (شامل پرسپترون چندلایه و تابع شعاعی) و رگرسیون چند متغیره انجام شد. برای این منظور ابتدا اقدام به تعیین تیپ غالب آب منطقه شد و سپس اقدام به مدل­سازی شد. نتایج حاص...

full text

شبیه‌سازی تغییرات کیفی آب زیرزمینی با مدل شبکة عصبی مصنوعی (مطالعة موردی: آبخوان کاشان)

مجاورت آبخوان کاشان با جبهة آب شور دریاچة نمک به پیشروی آب شور به داخل آبخوان منجر شده است. در این پژوهش، با توجه به وضعیت موجود، شبیه‏سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل‏های شبکة عصبی مصنوعی انجام شد. بدین منظور، نخست به تعیین تیپ غالب آب منطقه پرداخته شد. سپس، اقدام به مدل‏سازی شد. نتایج حاصل از بررسی تیپ آب به وسیلة نمودار پایپر نشان داد که کلرور- سدیم تیپِ غالب آب منطقه است. بن...

full text

شبیه سازی تغییرات کیفی آب زیرزمینی با مدل شبکة عصبی مصنوعی (مطالعة موردی: آبخوان کاشان)

مجاورت آبخوان کاشان با جبهة آب شور دریاچة نمک به پیشروی آب شور به داخل آبخوان منجر شده است. در این پژوهش، با توجه به وضعیت موجود، شبیه‏سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل‏های شبکة عصبی مصنوعی انجام شد. بدین منظور، نخست به تعیین تیپ غالب آب منطقه پرداخته شد. سپس، اقدام به مدل‏سازی شد. نتایج حاصل از بررسی تیپ آب به وسیلة نمودار پایپر نشان داد که کلرور- سدیم تیپِ غالب آب منطقه است. بن...

full text

مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)

مسکن همواره نیازی اساسی در جامعه تلقی می‌گردد. بازار مسکن طی سال‌های گذشته یکی از پرنوسان-ترین بخش‌های اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخش‌های اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیش‌بینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیش‌بینی قیمت مسکن در ش...

full text

مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)

مسکن همواره نیازی اساسی در جامعه تلقی می‌گردد. بازار مسکن طی سال‌های گذشته یکی از پرنوسان-ترین بخش‌های اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخش‌های اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیش‌بینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیش‌بینی قیمت مسکن در ش...

full text

مقایسه روش‌های شبکه عصبی مصنوعی و رگرسیون چند متغیره در پهنه‌بندی خطر زمین‌لغزش، مطالعه موردی: حوضه ونک، استان اصفهان

زمین‌­لغزش­‌ها از مهمترین خطرات طبیعی هستند که نه تنها زندگی انسان را به خطر می­‌اندازند، بلکه باعث ایجاد بار اقتصادی برای جامعه می­‌شوند. با توجه به اهمیت تشخیص مناسب­‌ترین روش برآورد صحیح خطر زمین‌­لغزش، در این پژوهش میزان کارایی دو روش شبکه عصبی مصنوعی و رگرسیون چندمتغیره مقایسه شد. بدین منظور ابتدا با استفاده از عکس­‌های هوایی، تصاویر ماهواره­‌ای، نقشه­‌های زمین‌شناسی و بررسی‌های میدانی نقش...

full text

My Resources

Save resource for easier access later


Journal title:
دانش آب و خاک

Publisher: دانشگاه تبریز

ISSN 2008-5133

volume 25

issue 2 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023